$h \to b \bar b$ in the frame of mSUGRA

 $m_0 = 300 \text{ GeV}, m_{1/2} = 600 \text{ GeV}$ $E_T^{\text{miss}} > 400 \text{ GeV}$ $\geq 4 \text{ jets}, p_T^{\text{jet}} > 40 \text{ GeV}, |\eta^{\text{jet}}| < 4.5$ $\geq 2 \text{ tagged jets}, |\eta^{\text{tag}}| < 1.75$ circularity > 0.1

No leptons treatment

Figure 1

Figure 2

FIGURE 11

FIG. 7. Distributions of $\cos \theta^*$ for W+jets background events, with no pileup. The distribution for the ISAJET partons is compared with that found with three different calorimeter segmentations.

Fig. 6.3: Typical flux line distribution.

Figure 3: (a) Decay time spectrum of SCSN81/BCF91A, box pattern. Tail of the measured decay spectra was fitted to an exponential function (= $A \cdot e^{-rt}$) to obtain a "decay time (= τ)". (b) The decay spectrum was integrated to obtain the time needed to capture 90% of the signal ($\equiv \Delta t = 90\%$ signal collection time) (c) Integrated signal inside Δt .

PMT Box (Side View)

Fig. 5. Relative light yield increase as a function of magnetic field. (o) SCSN38 with ²²⁶Ra; (+) SCSN38 with ⁶⁰Co; (\$) DESY calorimeter with SCSN38 using 6 GeV electrons; (×) Shashlik calorimeter using electron beam.

Figure 9: Radiation hardness (ratio of light yield after to before the irradiation as a function of total dose) for a "standard" tile/fiber - SCSN81/BCF91A(or Y7) measured by beam test modules using electron beam. Data from references [4,5,6].

